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Abstract: It is known that most numerical methods for solving differential equations are based on iterative methods
or Taylor expansion methods. This paper tries to study a numerical method from a new perspective—optimization
method. By means of the idea of kernel ε-SVR, the paper constructs an optimization model for a class of three-
point boundary value problems (BVPs) of linear second-order ordinary differential equations (ODEs) with variable
coefficients and proposes a novel numerical method for solving them. The proposed method has a certain versatility
and can be used to solve some other kinds of differential equations and integral equations. In order to verify the
effectiveness of the proposed method, comparative experiments with six specific linear second-order ODEs are
performed. Experimental results show that the proposed method has a good approximation property.
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1 Introduction
Differential equations can be found in the mathemati-
cal formulation of physical phenomena in a wide vari-
ety of applications especially in science and engineer-
ing. Depending on the form of the boundary condi-
tions to be satisfied by the solution, problems involv-
ing ordinary differential equations (ODEs) can be di-
vided into two main categories, initial value problems
(IVPs) and boundary value problems (BVPs). Exact
solutions for these problems are not generally avail-
able and hence numerical methods must be applied.

Multi-point BVPs for ODEs can arise in solving
linear partial differential equations by using the sep-
aration variable method [1]. Moreover, in the engi-
neering problem to increase the stability of a rod, one
also imposes a fixed interior point except for the ends
of the rod [2]. Along this line, the solutions of multi-
point BVPs for ODEs have great significance in math-
ematical theory and practical applications [3-4]. It is
seen that the three-point BVPs of nonlinear second-
order ODEs have attracted much attention [5-8] and
it is significant to provide the solutions and Green’s
functions for these problems [9-10]. As shown in
mentioned works, the existence and uniqueness of the
solution are always focused on by using a fixed point
theorem. However, from the viewpoint of practical
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applications, one should provide explicit solutions or
approximate solutions for multi-point BVPs. In this
paper, inspired by work of S. Mehrkanoon et. al [11],
we try from a new perspective to study a class of three-
point BVPs of linear second-order ODEs with vari-
able coefficients

y′′(x) + p(x)y′(x) + q(x)y(x) = g(x),
x ∈ [a, b],
y(a) = p0,

y(b) + λy(µ) = q0, µ ∈ (a, b),

(1)

where the known functions p(x) ∈ C1[a, b], q(x), g(x)
∈ C[a, b] and λ, µ are the constants, and research how
to obtain its approximal solutions by using an opti-
mization method based on kernel support vector re-
gression (KSVR).

Kernel support vector regressions (KSVRs) based
on optimization modelings are a powerful methodol-
ogy for solving pattern recognition and function esti-
mation problems, which based on Vapnik and Cher-
vonenkis structural risk minimization principle [12].
They show better generalization ability compared to
other machine learning methods on a wide variety of
real-world problems, such as optimal control [13], im-
age segmentation [14], image denoising [15], time se-
ries prediction [16], cyber security problems [17], net-
work traffic predictive [18] and so on.
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KSVRs are used to deal with nonlinear regres-
sion problems by means of kernel skill. Data can be
mapped into a high dimensional feature space by us-
ing a kernel function and then linear regression prob-
lems can be solved, which results in solving quadratic
programming problems (QPPs). The main challenge
in developing a useful regression modeling is to cap-
ture accurately the underlying functional relationship
between the given inputs and their output values.
Once the resulting model is obtained, it can be used as
a tool for analysis, simulation and prediction. KSVR
aims at determining a regressor for a given set of data
points and a kernel function. The basic idea of ker-
nel ε-SVR with ε-insensitive loss function proposed
by Vapnik [12] is to find a linear function y(x) in
the higher dimensional feature space such that, on the
one hand, more mapped data samples locate in the ε-
intensive tube between y(x) − ε and y(x) + ε and on
the other hand, the function y(x) is as flat as possi-
ble, which leads to introduce the regularization term.
Thus, the structural risk minimization principle is im-
plemented.

The paper mainly researches how to use kernel ε-
SVR method to obtain numerical solutions of Eq.(1).
It can be seen from the derivation process that some
IVPs and BVPs of general linear ODEs may be stud-
ied by using the similar way. The paper does not in-
volve nonlinear ODEs, which will be our next work.
The remainder of this paper is organized as follows:
Section 2 briefly reviews kernel ε-SVR and some ba-
sic concepts. Section 3 presents a new approximation
method for the solution of Eq.(1). In order to ver-
ify the effectiveness of the presented method, a series
of comparative experiments with six specific linear
second-order ODEs are performed in Section 4 and
some concluding remarks are given in Section 5.

2 Kernel ε-SVR

This section briefly recalls kernel ε-SVR, for details
see [12]. Let T = {(xi, yi)}li=1 be a set of sample data,
where xi ∈ Rn and yi ∈ R are input and output of
the ith sample data respectively. Let k : Rn × Rn →
R be a kernel function with the reproducing kernel
Hilbert space (RKHS) H and the nonlinear feature
mapping φ : Rn → H. The space H is a higher
dimensional space and can be expressed as an ex-
pended space of the mapped inputs {φ(xi)}li=1, that is,
H = span{φ(x1), · · · , φ(xl)}. It is known that k(u, v) =

〈φ(u), φ(v)〉 for all u, v ∈ Rn, where 〈·, ·〉 denotes the
inner product in RKBS H. Let K = [k(xi, x j)] ∈ Rl×l

be the kernel matrix and Ki denote the ith column of
K. ε-SVR is based on ε-insensitive loss function de-

fined by

Lε(y) =

{
0 if | f (x) − y| ≤ ε,
| f (x) − y| − ε otherwise,

where f (x) and y are the predicted value and true value
of the input x ∈ Rn, respectively. The regression func-
tion obtained by using kernel ε-SVR has the form
f (x) = wTφ(x) + b, where unknown normal vector
w ∈ H and bias b ∈ R can be obtained by solving the
following optimization problem:

min
w,b

1
2‖w‖2 + C

l∑
i=1

(ξ1i + ξ2i),

s.t. wTφ(xi) + b − yi ≤ ε + ξ1i, i = 1, · · · , l,
yi − (wTφ(xi) + b) ≤ ε + ξ2i, i = 1, · · · , l,
ξ1i, ξ2i ≥ 0, i = 1, · · · , l,

(2)

where C > 0 is a pre-specified value and ξ1i, ξ2i, i =

1, · · · , l are slack variables. Due to

H = span{φ(x1), · · · , φ(xl)},
we can set w =

∑l
i=1 βiφ(xi). Put

β = (β1, · · · , βl)T ,

y = (y1, · · · , yl)T ,

el = (1, · · · , 1)T ∈ Rl,

ξ1 = (ξ11, · · · , ξ1l)T ∈ Rl,

ξ2 = (ξ21, · · · , ξ2l)T ∈ Rl,

then wTφ(xi) = KT
i β and the problem (2) can be

rewritten as the matrix form:

min
w,b

1
2β

T Kβ + CeT
l (ξ1 + ξ2),

s.t. Kβ + bel − y ≤ εel + ξ1,

y − (Kβ + bel) ≤ εel + ξ2,

ξ1, ξ2 ≥ 0.

(3)

By solving the Wolfe dual form of the problem (3):

min
α1,α2

1
2 (α1 − α2)T K(α1 − α2) − yT (α1 − α2)

+εeT
l (α1 + α2)

s.t. eT
l (α1 − α2) = 0,

0 ≤ α1, α2 ≤ Cel,

we can obtain the optimal solution (α∗1, α
∗
2) and then

β∗ = α∗1 − α∗2,
b∗ = yi − KT

i β
∗ + ε for some i : 0 < α∗1i < C,

or

b∗ = yk − KT
k β
∗ − ε for some k : 0 < α∗2k < C.

Therefore, the optimal regression function is

f (x) = [k(x1, x), · · · , k(xl, x)]β∗ + b∗.
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3 A numerical method based on Ker-
nel ε-SVR

It is known that KSVRs based on optimization model
are a powerful methodology for solving function esti-
mation problems and show better generalization abil-
ity than other machine learning methods on a wide va-
riety of real-world problems. But the main challenge
in developing a useful regression model is to cap-
ture the underlying functional relationship between
the given inputs and their output values accurately.

This section tries to study how to seek the numeri-
cal solutions of Eq.(1) by using kernel ε-SVR. Specif-
ically, it assumes that numerical solutions of Eq.(1)
have the form ŷ(x) = wTφ(x) + b for a given kernel
function k : R × R → R with RKHS H and feature
mapping φ : R → H and then learns unknown w ∈ H
and b ∈ R by kernel ε-SVR. For this end, the domain
[a, b] of Eq.(1) needs to be discretized into a set of
collocation points a = x1 < x2 < · · · < xl = b with
the same stepsize h = b−a

l−1 such that µ = xn ∈ (x1, xl),
and then the points {xi}l=1 are selected as input val-
ues. Since there are no available output values to learn
(w, b) from Eq.(1), we have to substitute the function
ŷ(x) = wTφ(x) + b into Eq.(1). So, it needs to de-
fine the derivative of the kernel function. Making use
of the Mercer’s Theorem [19], derivatives of the fea-
ture map can be written in terms of derivatives of the
kernel function [20]. Define the following differential
operator which will be used in subsequent sections,

∇m
n k(u, v) =

∂n+mk(u, v)
∂un∂vm ,∀u, v ∈ R, n,m = 1, 2, · · · .

By the definition of kernel function, it has

∇m
n k(u, v) = (φ(n)(u))Tφ(m)(v),

and then

ŷ(x) = wTφ(x) + b =
∑l

j=1 β jφ(x j)Tφ(x) + b
=

∑l
j=1 β jk(x j, x) + b,

ŷ′(x) = wTφ′(x) =
∑l

j=1 β jφ(x j)Tφ′(x)
=

∑l
j=1 β j∇1

0k(x j, x),
ŷ′′(x) = wTφ′′(x) =

∑l
j=1 β jφ(x j)Tφ′′(x)

=
∑l

j=1 β j∇2
0k(x j, x).

In the sequel, put

K0
0 = [∇0

0k(xi, x j)] = [k(xi, x j)] = K ∈ Rl×l,

Km
n = [∇m

n k(xi, x j)] = [∇m
n k(u, v)|u=xi,v=x j] ∈ Rl×l,

and denote by (Km
n )i and Ki the ith columns of the

matrices Km
n and K, respectively. Let

L(y(x)) = y′′(x) + p(x)y′(x) + q(x)y(x).

If ŷ(x) is an exact solution of Eq.(1), then ŷ(a) =

p0, ŷ(b) + λŷ(µ) = q0 and L(ŷ(xi)) = g(xi) for all
i = 1, · · · , l. But in general, ŷ(a), ŷ(b) + λŷ(µ) and
L(ŷ(xi)) are not necessarily equal to p0, q0 and g(xi),
respectively. So, we hope the smaller the better of
the absolute values |ŷ(a) − p0|, |ŷ(b) + λŷ(µ) − q0| and
|L(ŷ(xi)) − g(xi)| for i = 1, · · · , l. For this end, choose
{g(xi)}li=1 as output values and construct the following
optimization problem:

min
w,b

1
2‖w‖2 + C

∑l
i=1(ξ1i + ξ2i),

s.t. L(ŷ(xi)) − g(xi) ≤ ε + ξ1i,

ξ1i ≥ 0, i = 1, · · · , l,
g(xi) − L(ŷ(xi)) ≤ ε + ξ2i,

ξ2i ≥ 0, i = 1, · · · , l,
ŷ(x1) = p0,

ŷ(xl) + λŷ(xn) = q0,

(4)

where C > 0 is a pre-specified value and ξ1i, ξ2i, i =

1, · · · , l are slack variables.
In the problem (4), it assumes the boundary con-

ditions being satisfied and hopes the most values of
{L(ŷ(xi))}li=1 satisfying |L(ŷ(xi)) − g(xi)| < ε for some
given sufficiently small ε > 0, which indicates that
the errors between exact values and estimated values
at most of discrete points {xi}li=1 are smaller than ε.
By discussion in the previous section, it knows that
the numerical solution ŷ(x) = wTφ(x) + b is continu-
ous if the kernel function k : R × R → R is continu-
ous. According to the symbol property of continuous
functions, it can conclude that the error between ex-
act solution and numerical solution in the whole do-
main [a, b] is smaller than ε as long as the stepsize h
is taken sufficiently small. In general, ε is often taken
as 10−4 ∼ 10−2. In this paper, take ε = 10−2.

According to the discussion in Section 2, we can
let w =

∑l
j=1 β jφ(x j) and then deduce that

ŷ(xi) =
∑l

j=1 β jk(x j, xi) + b = KT
i β + b,

ŷ(xl) + λŷ(xn) = (Kl + λKn)Tβ + (1 + λ)b,
ŷ′(xi) = (K1

0 )T
i β,

ŷ′′(xi) = (K2
0 )T

i β,

L(ŷ(xi)) = [(K2
0 )i + p(xi)(K1

0 )i + q(xi)Ki]Tβ + q(xi)b,
i = 1, · · · , l.

Put

mi = (K2
0 )i + p(xi)(K1

0 )i + q(xi)Ki ∈ Rl, i = 1, · · · , l,
M = [m1, · · · ,ml] ∈ Rl×l,

g = (g(x1), · · · , g(xl))T ∈ Rl,

q = (q(x1), · · · , q(xl))T ∈ Rl,

then the problem (4) can be rewritten as the matrix
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form:

min
β,b,ξ1,ξ2

1
2β

T Kβ + CeT
l (ξ1 + ξ2)

s.t. MTβ + qb − g ≤ εel + ξ1, ξ1 ≥ 0,
g − MTβ − qb ≤ εel + ξ2, ξ2 ≥ 0,
KT

1 β + b = p0,

(Kl + λKn)Tβ + (1 + λ)b = q0.

(5)

Considering the Lagrange function of the problem (5)

L(β, b, ξ1, ξ2, η1, η2, ς1, ς2, α1, α2)
= 1

2β
T Kβ + CeT

l (ξ1 + ξ2)
+ηT

1 (MTβ + qb − g − εel − ξ1)
+ηT

2 (g − MTβ − qb − εel − ξ2)
−ς1

T ξ1 − ς2
T ξ2 + α1(KT

1 β + b − p0)
+α2((Kl + λKn)Tβ + (1 + λ)b − q0),

where η1, η2, ς1, ς2 ∈ Rl and α1, α2 ∈ R are the vectors
of Lagrange multipliers, and letting ∂L

∂β = ∂L
∂b = ∂L

∂ξ1
=

∂L
∂ξ2

= 0, it can deduce that

Kβ + M(η1 − η2) + α1K1 + α2(Kl + λKn) = 0,
qT (η1 − η2) + α1 + (1 + λ)α2 = 0,
Cel − η1 − ς1 = 0⇒ 0 ≤ η1 ≤ Cel,

Cel − η2 − ς2 = 0⇒ 0 ≤ η2 ≤ Cel.

(6)

Since the kernel matrix K is symmetric and nonnega-
tive definite, it can be assumed as a nonsingular matrix
without loss of generality. Otherwise, to take care of
problems due to possible ill-conditioning, a regular-
ization term K + δIl can be introduced with a suffi-
ciently small number δ > 0 and a l order unit matrix
Il. Put

D = [M,−M,K1,Kl + λKn] ∈ Rl×(2l+2),

γ = [ηT
1 , η

T
2 , α1, α2]T ∈ R2l+2,

d = [qT ,−qT , 1, (1 + λ)]T ∈ R2l+2.

It can get β = −K−1Dγ from (6). Substituting (6) and
β = −K−1Dγ into the Lagrange function, it has

L(γ) = − 1
2γ

T DT K−1Dγ − zTγ,

where

z = ((εel + g)T , (εel − g)T , p0, q0)T ∈ R2l+2.

Consequently, the Wolfe dual form of the problem (5)
can be written as

min
γ

1
2γ

T DT K−1Dγ + zTγ

s.t. dTγ = 0,
0 ≤ γ j ≤ C, j = 1, · · · , 2l.

(7)

After getting the optimal solution γ∗ of the problem
(7), it has

β∗ = −K−1Dγ∗,
b∗ = p0 − KT

1 β
∗,

and then the numerical solution of Eq.(1) is

ŷ(x) = [k(x1, x), · · · , k(xl, x)]β∗ + b∗.

The specific procedure is as follows.
Algorithm 1.
Step 1. Discrete the domain [a, b] by a = x1 <

x2 < · · · < xl = b with a sufficiently small same step-
size h = b−a

l−1 such that µ = xn ∈ (x1, xl).
Step 2. Select a proper kernel function.
Step 3. Choose proper kernel parameters and

model parameters.
Step 4. Solve the problem (7) and obtain the op-

timal solution γ∗.
Step 5. Compute β∗ = −K−1Dγ∗ and b∗ = p0 −

KT
1 β
∗.
Step 6. construct the numerical solution of Eq.(1)

by ŷ(x) = [k(x1, x), · · · , k(xl, x)]β∗ + b∗.

4 Numerical examples

In order to demonstrate the effectiveness of Algorithm
1, in this section, a series of comparative experiments
are performed between numerical solutions and exact
solutions in the following six elaborated three-point
BVPs of linear second-order ODEs with variable co-
efficients. The first five examples come from a the
second kind Fredholm integral equation [10]

ϕ(x) − 1
2

∫ 1
0 (x + 1)e−xyϕ(y)dy = e−x − 1

2 + 1
2 e−(x+1),

0 ≤ x ≤ 1,

and have the same exact solution ϕ(x) = e−x. The
sixth example is also taken from [10] and has the exact
solution ϕ(x) = ex.

Example 1. Consider a three-point BVP of linear
second-order ODE with variable coefficients:

{
ϕ′′(x) + ϕ′(x) + xϕ(x) = xe−x, 0 ≤ x ≤ 1,
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e−1 + e−1/2.

Example 2. Consider a three-point BVP of linear
second-order ODE with variable coefficients:
{
ϕ′′(x) − (1 + sin x)ϕ(x) = −e−x sin x, 0 ≤ x ≤ 1,
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e−1 + e−1/2.

Example 3. Consider a three-point BVP of linear
second-order ODE with variable coefficients:
{
ϕ′′(x) + x2ϕ′(x) − xϕ(x) = (1 − x − x2)e−x, 0 ≤ x ≤ 1,
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e−1 + e−1/2.
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Example 4. Consider a three-point BVP of linear
second-order ODE with variable coefficients:

{
ϕ′′(x) + (1 + x)ϕ′(x) = −xe−x, 0 ≤ x ≤ 1,
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e−1 + e−1/2.

Example 5. Consider a three-point BVP of linear
second-order ODE with variable coefficients:

ϕ′′(x) + sin xϕ′(x) + x2ϕ(x) = (1 − sin x + x2)e−x,

0 ≤ x ≤ 1,
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e−1 + e−1/2.

Example 6. Consider a three-point BVP for a
second-order ODE with variable coefficients:

{
ϕ′′(x) − (1 + sin x)ϕ(x) = −ex sin x, x ∈ [0, 1],
ϕ(0) = 1, ϕ(1) + ϕ(1/2) = e + e1/2.

All computations are implemented in Matlab
2010b on a PC with 2.5 GHz CPU and 4 G bytes mem-
ory. The Gaussian RBF kernel function

k(u, v) = exp{− (u − v)2

2σ2 },∀u, v ∈ R

is chosen in all experiments and the model parameter
C and kernel parameter σ are taken as C = 1 and
σ = 2. The experiment results are listed in Table 1
and the diagrams of comparisons are listed in Figure
1.

Because most of known methods for solving dif-
ferential equations numerically are focus on Taylor
expansion or discrete approaches, almost no use of op-
timization method, it can only compare the errors be-
tween numerical solutions and exact solutions in this
paper. From Table 1, it can see that the proposed nu-
merical method has good accuracy, which can be seen
more obvious from Figure 1. According to the ex-
periment results, we can conclude that the proposed
method is feasible and effective for solving numerical
three-point BVPs of linear second-order ODEs with
variable coefficients.

5 Conclusions

This paper tries to seek the numerical solutions of
three-point BVPs of linear second-order ODEs with
variable coefficients by using optimization technol-
ogy. Although kernel ε-SVR based on optimization
model is a powerful methodology for solving func-
tion estimation problems, the main challenge in de-
veloping a useful regression model is to capture the
underlying functional relationship between the given
inputs and their output values accurately. In order to
construct optimization model corresponding to kernel

ε-SVR, this paper selects the discrete points of the
domain of Eq.(1) as input values and selects values
of the function L(ŷ(x)) at the discrete points as out-
put values. By solving the Wolfe dual problem of the
model, a numerical method is proposed. experiment
results indicates that the proposed method has a good
approximation property. From the derivation process,
it can be seen that the proposed method has a certain
versatility and can be used to study some other kinds
of linear ODEs. The paper only involves linear ODEs
and nonlinear ODEs problems will be our next work.
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Table 1: Comparison for six examples
(a) Comparison for Example 1.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 0.9048 0.9160 0.0112
0.2 0.8187 0.8350 0.0163
0.3 0.7408 0.7575 0.0167
0.4 0.6703 0.6842 0.0139
0.5 0.6065 0.6156 0.0091
0.6 0.5488 0.5521 0.0033
0.7 0.4966 0.4943 0.0022
0.8 0.4493 0.4426 0.0067
0.9 0.4066 0.3973 0.0092

1 0.3679 0.3588 0.0091

(b) Comparison for Example 2.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 0.9048 0.9136 0.0087
0.2 0.8187 0.8307 0.0120
0.3 0.7408 0.7522 0.0113
0.4 0.6703 0.6784 0.0081
0.5 0.6065 0.6100 0.0035
0.6 0.5488 0.5475 0.0014
0.7 0.4966 0.4913 0.0053
0.8 0.4493 0.4418 0.0075
0.9 0.4066 0.3994 0.0072

1 0.3679 0.3644 0.0035

(c) Comparison for Example 3.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 0.9048 0.9143 0.0094
0.2 0.8187 0.8320 0.0132
0.3 0.7408 0.7537 0.0129
0.4 0.6703 0.6801 0.0097
0.5 0.6065 0.6116 0.0051
0.6 0.5488 0.5488 0.0000
0.7 0.4966 0.4921 0.0044
0.8 0.4493 0.4420 0.0073
0.9 0.4066 0.3988 0.0078

1 0.3679 0.3628 0.0051

(d) Comparison for Example 4.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 0.9048 0.9161 0.0113
0.2 0.8187 0.8351 0.0164
0.3 0.7408 0.7577 0.0169
0.4 0.6703 0.6844 0.0141
0.5 0.6065 0.6158 0.0092
0.6 0.5488 0.5523 0.0035
0.7 0.4966 0.4944 0.0021
0.8 0.4493 0.4426 0.0067
0.9 0.4066 0.3973 0.0093

1 0.3679 0.3586 0.0092

(e) Comparison for Example 5.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 0.9048 0.9038 0.0011
0.2 0.8187 0.8138 0.0049
0.3 0.7408 0.7307 0.0101
0.4 0.6703 0.6552 0.0152
0.5 0.6065 0.5877 0.0188
0.6 0.5488 0.5288 0.0200
0.7 0.4966 0.4790 0.0176
0.8 0.4493 0.4385 0.0108
0.9 0.4066 0.4077 0.0011

1 0.3679 0.3867 0.0188

(f) Comparison for Example 6.

x Exact solution Numerical solution Absolute error

0 1.0000 1.0000 0.0000
0.1 1.1052 1.1022 0.0030
0.2 1.2214 1.2221 0.0007
0.3 1.3499 1.3587 0.0089
0.4 1.4918 1.5112 0.0194
0.5 1.6487 1.6784 0.0297
0.6 1.8221 1.8591 0.0369
0.7 2.0138 2.0519 0.0381
0.8 2.2255 2.2554 0.0299
0.9 2.4596 2.4682 0.0086

1 2.7183 2.6886 0.0297
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(a) Comparison for Example 1.
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(b) Comparison for Example 2.
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(c) Comparison for Example 3.
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(d) Comparison for Example 4.
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(f) Comparison for Example 6.

Figure 1: diagrams of comparisons for six examples
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